Search results

Search for "acid catalysis" in Full Text gives 93 result(s) in Beilstein Journal of Organic Chemistry.

(Bio)isosteres of ortho- and meta-substituted benzenes

  • H. Erik Diepers and
  • Johannes C. L. Walker

Beilstein J. Org. Chem. 2024, 20, 859–890, doi:10.3762/bjoc.20.78

Graphical Abstract
  • substrate. Employing Lewis acid catalysis Deng and co-workers reported an alternative pathway to indole-derived BCHs. Polysubstituted BCHs were accessed by nucleophilic addition of the indole to the activated bicyclobutane followed by a Mannich cyclisation [81]. The synthesis of wide variety of tri- and
PDF
Album
Review
Published 19 Apr 2024

HPW-Catalyzed environmentally benign approach to imidazo[1,2-a]pyridines

  • Luan A. Martinho and
  • Carlos Kleber Z. Andrade

Beilstein J. Org. Chem. 2024, 20, 628–637, doi:10.3762/bjoc.20.55

Graphical Abstract
  • activities. The most direct way of obtaining this nucleus is the Groebke–Blackburn–Bienaymé three-component reaction (GBB-3CR) between aminopyridines, aldehydes, and isocyanides under both Lewis and Brønsted acid catalysis. However, several catalysts for this reaction have major drawbacks such as being
  • conditions and the employment of relatively complex starting materials [19]. A more efficient way of obtaining this nucleus is through the Groebke–Blackburn–Bienaymé three-component reaction (GBB-3CR) between amidines (aminoazoles), aldehydes, and isocyanides under both Lewis and Brønsted acid catalysis [20
  • ][21][22]. Multicomponent reactions (MCRs) provide one-pot reactions, simple synthetic procedures, less waste being produced, fewer purification steps, and a high atom economy [23]. The GBB three-component reaction is carried out in the presence of Lewis or Brønsted acid catalysis to increase the
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2024

Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination

  • Ruichen Lan,
  • Brock Yager,
  • Yoonsun Jee,
  • Cynthia S. Day and
  • Amanda C. Jones

Beilstein J. Org. Chem. 2024, 20, 479–496, doi:10.3762/bjoc.20.43

Graphical Abstract
  • both within the context of a classic gold π-activation/protodeauration mechanism and a general acid-catalyzed mechanism without intermediate gold alkyls. Keywords: alkene hydroamination; general acid catalysis; gold catalysis; isotope effect; phosphine ligand effect; solvent effect; Introduction
  • competing Brønsted acid catalysis in gold-catalyzed alkene functionalization remains a consideration [2], and while it is assumed that alkene activations follow the same prototypical mechanisms as allene and alkyne activations, that is (1) π-activation with nucleophilic attack followed by (2
  • were shown to proceed with anti-selectivity and that was used as support for gold catalysis [15], but mechanism studies of triflic acid catalysis showed a preference for anti-selectivity as well [31]. Despite similarities, control studies indicate meaningful differences in catalytic activity between
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2024

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
  • highest fungicidal activity [11]. Brønsted or Lewis acid catalysis – conventional synthetic methods The indole moiety is part of many natural products, agrochemicals, and pharmaceuticals. In medicinal chemistry, indole and its derivatives are considered important compounds, since they exhibit valuable
  • of green chemistry. Organocatalysis is the acceleration of chemical reactions with the use of small organic compounds, which do not contain any amounts of enzyme or inorganic elements [37][38][39]. The benefits of solid acid catalysis render them as an appealing choice, compared to their liquid
PDF
Album
Review
Published 22 Feb 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • . With this mechanistic blueprint as a backdrop, Phipps and co-workers developed an enantioselective Minisci-type addition, under dual photoredox and chiral Brønsted acid catalysis [44] (Scheme 5A). In their proposed mechanism, the activation of the NHPI ester radical precursor was proposed to occur via
PDF
Album
Perspective
Published 21 Feb 2024

N-Boc-α-diazo glutarimide as efficient reagent for assembling N-heterocycle-glutarimide diads via Rh(II)-catalyzed N–H insertion reaction

  • Grigory Kantin,
  • Pavel Golubev,
  • Alexander Sapegin,
  • Alexander Bunev and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2023, 19, 1841–1848, doi:10.3762/bjoc.19.136

Graphical Abstract
  • diazocarbonyl reagent is presented for the first time. The protective group is removed without acid catalysis with near quantitative yields. New benzotriazole derivatives containing functional groups capable of participating in the subsequent modification for linker attachment to assemble the PROTAC molecule
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2023

C–H bond functionalization: recent discoveries and future directions

  • Indranil Chatterjee

Beilstein J. Org. Chem. 2023, 19, 1568–1569, doi:10.3762/bjoc.19.114

Graphical Abstract
  • its combination with organometallic chemistry for site-selective C−H bond functionalization [3][4]. Recent years have witnessed many viable strategies for the synthesis of complex targets utilizing photoredox catalysis, electroorganic catalysis, Lewis acid catalysis, and transition-metal-free
PDF
Editorial
Published 17 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • nucleophilic attack of TMSN3 to deliver product 11 (Scheme 7). Tian and Chang et al. could synthesize 3‑sulfenylated coumarin compounds 13 by using N-sulfanylsuccinimides 1 under a Lewis acid catalysis system (Scheme 8) [48]. Additionally, oxidation of 3-sulfenylated coumarins utilizing (diacetoxyiodo)benzene
  • -(arylthio)succinimides 1 or N-(arylseleno)succinimides 1’’ was developed under a Lewis acid catalysis system. This reaction involves ring-opening of the substituted cyclopropane 49, amination at the C1-site, and thiolation at the C3-site. In the transformation, sulfonamide acted as a nucleophile
  • formation of three-membered cyclic sulfonium ion II followed by ring-opening of sulfonium ion and intramolecular cyclization. The use of a Lewis base/Brønsted acid catalysis system for the sulfenylation of aromatic substrates 4 was reported by Gustafson et al. (Scheme 55) [87]. In the method, catalyst P
PDF
Album
Review
Published 27 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
  • with mCPBA produced the epoxide 13.3. Then, the addition of benzoic acid in the presence of acid catalysis produced an ester that was saponified to yield the diol 13.4. A three-step sequence is applied to produce compound 13.5 that features a secondary alcohol protected with a benzyl group. Then, the
PDF
Album
Review
Published 08 Sep 2023

Computational studies of Brønsted acid-catalyzed transannular cycloadditions of cycloalkenone hydrazones

  • Manuel Pedrón,
  • Jana Sendra,
  • Irene Ginés,
  • Tomás Tejero,
  • Jose L. Vicario and
  • Pedro Merino

Beilstein J. Org. Chem. 2023, 19, 477–486, doi:10.3762/bjoc.19.37

Graphical Abstract
  • alkenes under chiral BINOL-derived Brønsted acid catalysis has been studied by Houk and Rueping in 2014 [33]. These authors established the origin of the enantioselectivity and the differences between the catalyzed and uncatalyzed reactions, suggesting that the catalyzed reaction is, actually, a so-called
  • and co-workers demonstrated for transannular Diels–Alder cycloaddition reactions of symmetrically tethered large systems (10–18-membered rings) [29]. In this context, we have recently reported the transannular enantioselective (3 + 2) cycloaddition of cycloalkenone hydrazones under Brønsted acid
  • catalysis in route to enantiomerically pure bicyclic 1,3-diamines (Scheme 1) [29]. The reaction led to excellent results when decalines and octahydro-1H-indene bicyclic scaffolds were formed (series a and b) but failed in other cases (series c, d, and k). Series e, f, g, h, and i have not been tested
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2023

Germacrene B – a central intermediate in sesquiterpene biosynthesis

  • Houchao Xu and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2023, 19, 186–203, doi:10.3762/bjoc.19.18

Graphical Abstract
  • optical activity difficult, especially if minor contaminants falsify these data. Furthermore, the variability of the optical rotations given in the literature may be a consequence of mixed enantiomeric compositions arising from contaminations of enzymatically formed 11 with 11 generated upon acid
  • catalysis during compound isolations. The reporting of (–)-11, (+)-11 and 11 of unspecified absolute configuration all under the same CAS number (473-04-1) adds to the confusion. Moreover, one report is available that mentions the isolation of 11 from Atractylodes macrocephala [87]. For unclear reason, this
PDF
Album
Review
Published 20 Feb 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • organocatalyst forms hydrogen bonds with both H2O2 and cyclic ketones [66]. A chiral Brønsted acid was used as chirality source and activator of H2O2 for an asymmetric sulfoxidation reaction [67] (Scheme 4B). It is generally accepted that in asymmetric Brønsted acid catalysis the activation of both the
  • ethanol). Brønsted acid catalysis by TsOH was also employed in a selective sulfoxidation employing PhI(OAc)2 as oxidant [69]. In this case another mode of catalysis was proposed, including the covalent bonding of the acid catalyst anion and the oxidant with the formation of PhI(OTs)OH as the catalytically
PDF
Album
Perspective
Published 09 Dec 2022

Vicinal ketoesters – key intermediates in the total synthesis of natural products

  • Marc Paul Beller and
  • Ulrich Koert

Beilstein J. Org. Chem. 2022, 18, 1236–1248, doi:10.3762/bjoc.18.129

Graphical Abstract
  • intramolecular aldol addition of ketones such as 7 (Scheme 2) [5]. Brønsted-acid catalysis leads via a transition state 8 to the aldol 9, while the use of chelating Lewis acids results via 10 in the epimeric aldol 11. This review is a collection of total syntheses of natural products where vicinal keto esters
PDF
Album
Review
Published 15 Sep 2022

Lewis acid-catalyzed Pudovik reaction–phospha-Brook rearrangement sequence to access phosphoric esters

  • Jin Yang,
  • Dang-Wei Qian and
  • Shang-Dong Yang

Beilstein J. Org. Chem. 2022, 18, 1188–1194, doi:10.3762/bjoc.18.123

Graphical Abstract
  • recognized as challenging since there is no single report on such a sequence under Lewis acid catalysis. Herein, we report the synthesis of phosphoric esters by a Lewis acid Cu(OTf)2-catalyzed one-pot Pudovik reaction–phospha-Brook rearrangement sequence between pyridinyl-substituted aldehyde or pyridone
PDF
Album
Supp Info
Letter
Published 09 Sep 2022

Structural basis for endoperoxide-forming oxygenases

  • Takahiro Mori and
  • Ikuro Abe

Beilstein J. Org. Chem. 2022, 18, 707–721, doi:10.3762/bjoc.18.71

Graphical Abstract
  • reported, by using a metal catalyst or Brønsted-acid catalysis [79][80][81]. However, the efficient regio- and stereoselective installation of the endoperoxide structure is still challenging, because of the increased reactivity of activated oxygen/peroxides and the high sensitivity of peroxide bridges to
PDF
Album
Review
Published 21 Jun 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • ) triflate [123], through an adapted Thiele–Winter acetoxylation reaction. The standard procedure involved the use of acetic anhydride and sulfuric acid catalysis. However, the use of sulfuric acid, a strong acid and oxidizing agent, can produce tar in some cases. In order to get around this problem a
PDF
Album
Review
Published 11 Apr 2022

A Se···O bonding catalysis approach to the synthesis of calix[4]pyrroles

  • Qingzhe Tong,
  • Zhiguo Zhao and
  • Yao Wang

Beilstein J. Org. Chem. 2022, 18, 325–330, doi:10.3762/bjoc.18.36

Graphical Abstract
  • , several synthetic methods to access these compounds have been reported [54][55]. The classical approaches to synthesis of calix[4]pyrrole derivatives mainly involved a stepwise synthesis and Lewis acid as well as Brønsted acid catalysis [54][55]. Notably, a noncovalent catalysis approach to accessing
PDF
Album
Supp Info
Letter
Published 18 Mar 2022

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • asymmetric addition reaction of racemic naphthylindole 42 with azodicarboxylate 43 under chiral phosphoric acid catalysis. In the presence of CPA 2, 42 and 43 reacted and underwent dynamic kinetic resolution to afford naphthylindoles 44 with axial chirality in moderate to good yields (50–98%) and high
  • phosphoric acid catalysis, we developed a highly regio-, diastereo-, and enantioselective dearomatization reaction of 1-substituted 2-naphthols 115 and β,γ-alkynyl-α-imino esters 100. The highly functionalized naphthalenone derivatives 116 with an allene moiety, exhibiting both a quaternary stereocenter and
PDF
Album
Review
Published 15 Nov 2021

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
PDF
Album
Review
Published 04 Nov 2021

Enantioselective PCCP Brønsted acid-catalyzed aminalization of aldehydes

  • Martin Kamlar,
  • Robert Reiberger,
  • Martin Nigríni,
  • Ivana Císařová and
  • Jan Veselý

Beilstein J. Org. Chem. 2021, 17, 2433–2440, doi:10.3762/bjoc.17.160

Graphical Abstract
  • chiral Brønsted acids. In the scope of Brønsted acid catalysis, chiral phosphoric acids (CPA) are dominating as potent catalysts in various asymmetric transformations [19][20][21][22][23], although the synthesis of these catalysts is expensive and laborious [24]. One of the most frequent examples of CPAs
  • strategies employing chiral Brønsted acid catalysis. X-ray single-crystal structure of aminal 3l with the displacement ellipsoids drawn at the 30% probability level. The substrate scope of the aminalization reaction for different aldehydes. aAfter recrystallization; breaction run at 1 mmol scale. The
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2021

Progress and challenges in the synthesis of sequence controlled polysaccharides

  • Giulio Fittolani,
  • Theodore Tyrikos-Ergas,
  • Denisa Vargová,
  • Manishkumar A. Chaube and
  • Martina Delbianco

Beilstein J. Org. Chem. 2021, 17, 1981–2025, doi:10.3762/bjoc.17.129

Graphical Abstract
  • of the glycosidic bond. In this system, the SEE was hydrolytically inactive and the acid catalysis activated the C-1 at the reducing end efficiently to promote chain-elongation. Immobilized catalysis provided cellulose analogues with very high crystallinity. A synthetic mutant enzyme of endoglucanase
PDF
Album
Review
Published 05 Aug 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • employed, and an example of a seven-membered lactone was reported (Scheme 25A, 66). However, in the latter case, acid catalysis and reflux were needed to ensure cyclization. Still taking advantage of the enolate intermediate, the Cui group reported the use of olefins 68, containing tethered leaving groups
  • reaction was observed in its absence. The authors highlighted the role of the solvent hexafluoro-2-propanol (HFIP) in the stabilization of the radical cation induced by PET and its assistance in the hydrogen shift process. Miscellaneous Lewis acid catalysis in olefin hydroalkylation reactions The ability
PDF
Album
Review
Published 07 Jul 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Valorisation of plastic waste via metal-catalysed depolymerisation

  • Francesca Liguori,
  • Carmen Moreno-Marrodán and
  • Pierluigi Barbaro

Beilstein J. Org. Chem. 2021, 17, 589–621, doi:10.3762/bjoc.17.53

Graphical Abstract
  • ]. The remarkable activity was attributed to the dual effect of base and acid catalysis, in addition to the solubility of the catalyst in EG. It is worth mentioning that, in addition to the recovery of chemicals via chemolytic processes, repurposing techniques of PET were developed based on one-pot, two
PDF
Album
Review
Published 02 Mar 2021
Other Beilstein-Institut Open Science Activities